Quote

• “It may seem odd that scientists in the Internet age spend years on a line of research, even bet their careers on it, without having first determined that their mountain had not already been climbed.”

Overview

• Presentation
• Bioinformatics
 – NCBI
• Practice problems

Presentation

• Question: Which side of the class?
 – Left or Right

• Section 01 – Tue 11:00 – 306 DeBartolo
 – Graham Lappin
• Section 02 - Tue 12:30 – 331 DeBartolo
 – Graham Lappin
• Section 03 - Thu 11:00 – 306 DeBartolo
 – Graham Lappin
• Section 04 – Thu 12:30 – 228 DeBartolo
 – Graham Lappin
Presentation

• Presenters
 – Prior to presentation
 • Before 8am the day of your presentation
 – Email your bibliography
 – Email your powerpoint presentation
 – Use the clicker
 – ~20% faster when live than in practice
 – No need to say everything written on slides
 – Use a pointer
 – Talk to / Look at the audience
 – Why is the subject interesting
 – Be prepared to answer questions

• Audience
 – Become familiar with criteria on Peer Evaluation forms
 • Forms will be provided in class
 – Read abstracts prior to class
 • Identify three things you expect to hear
 • Current edition on the web
 – Come to class on time
 – Some sessions may go long
 – Ask questions
 • Your questions are easier
 • Polite & expected behavior

Informatics

• Informatics is a combination of
 – Subject expertise
 – Computing systems
 – Knowing how to find information

Types of Informatics

• Astroinformatics
• Bioinformatics
• Cheminformatics
• Ecoinformatics
• Geoinformatics
• Health Informatics

• Medical Informatics
• Neuroinformatics
• Nursing Informatics
• Pharmacy Informatics
• Quantum Informatics

Bioinformatics

• Bioinformatics includes
 – the development of methods to search databases quickly
 – analyzing DNA and protein sequence information and protein structures, and
 – predicting protein sequence and structure from DNA sequence data.

Bioinformatics Databases

- 1,436 databases

Major Databases

- NCBI - National Center for Biotechnology Information
- EMBL - European Molecular Biology Laboratory
- DDBJ - DNA Data Bank of Japan
- PDB - Protein Data Bank
- Swiss-Pro

NCBI

- National Center for Biotechnology Information
- Created in 1988 as a national resource for molecular biology information
- Part of the National Library of Medicine
- 4.4 million RefSeq DNA & RNA sequences from 10,700+ organisms

- NCBI has ~40 databases
- Each database has a search engine
- Unified search engine for all NCBI databases
“Peer Review”

- Journal articles
 - Most articles have been vetted by experts
 - Not magazine articles, encyclopedia articles, newspaper articles
- Patents
 - All issued patents vetted by a patent examiner
- What about data?

Data “peer review”

- Archival - non-peer reviewed
- Curated - peer reviewed
 - RefSeq data
 - Curated records begin with
 - NM - Nucleotide Database
 - NP - Protein Database

Conclusion

- Presentation details
- Bioinformatics
 - NCBI
 - Archival vs Curated data
- Practice
 - Purpose:
 - Intro to what can be done using NCBI databases